A Vector-Controlled Distributed Generator Model for a Power Flow Based on a Three-Phase Current Injection Method

نویسندگان

  • Pyeong-Ik Hwang
  • Seung-Il Moon
  • Seon-Ju Ahn
چکیده

This paper proposes a vector-controlled distributed generator (DG) model for a power flow based on a three-phase current injection method (TCIM). In order to represent the DG models in the power flow, steady-state phase current output equations are formulated. Using these equations, the TCIM power flow formulation is modified to include the DG models. In the proposed power flow, a DG-connected bus is modeled as either a load bus (PQ bus) or a voltage-controlled bus (PV bus), depending on the control mode of the reactive power. However, unlike conventional bus models, the values of the DG-connected bus models are represented by three-phase quantities: three-phase active and reactive power output for a PQ bus, and three-phase active power and positive-sequence voltage for a PV bus. In addition, a method is proposed for representing the reactive power limit of a voltage-control-mode DG by using the q-axis current limit. Utilizing a modified IEEE 13-bus test system, the accuracy of the proposed method is verified by comparison to the power systems computer aided design (PSCAD) model. Furthermore, the effect of the number of DGs on the convergence rate is analyzed, using the IEEE 123-bus test system.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Combined Vector and Direct Power Control for AC/DC/AC Converters in DFIG Based Wind Turbine

The doubly-fed generators (DFIG) have clear superiority for the applications of large capacity and limited-range speed control case due to the partially rated inverter, lower cost and high reliability. These characteristics enable the doubly-fed wound rotor induction machine to have vast applications in wind-driven generation.In this paper Combined Vector and direct power control (CVDPC) strate...

متن کامل

Implementation of Control Variables to Exploit Output Power for SRGs in Single Pulse Mode Operation

This paper presents an analytical modeling method of optimal control variables to maximize output power for switched reluctance generators (SRGs) in single pulse mode operation. This method extends the basic theory of the Stiebler model and utilizes the flux linkage function to express the inductance model of SRG. In this paper, the optimal phase current shape of SRG for maximum output power is...

متن کامل

A Fuzzy Controlled PWM Current Source Inverter for Wind Energy Conversion System

In recent years, there has been a fast growth in wind energy conversion system (WECS). There are two general types of wind turbines in WECS: fixed speed wind turbines and varying speed wind turbines.Permanent magnet synchronous generator (PMSG) is one of the most attractive generators for the varying speed turbine WECS.In this paper, a fuzzy controller is proposed to control the current source ...

متن کامل

A Novel Control Strategy for a Single-phase Grid-connected Power Injection System

In this paper, a novel and simple control strategy, based on state feedback method is suggested to control the power injection system (PIS). The considered PIS is composed of, a DC voltage source, a voltage source inverter (VSI) and a L-C-L filter. The DC source includes the battery source with boosted voltage. The battery can be charged with photovoltaic cells. Since, the grid voltage acts as ...

متن کامل

Distributed Generation Effects on Unbalanced Distribution Network Losses Considering Cost and Security Indices

Due to the increasing interest on renewable sources in recent years, the studies on integration of distributed generation to the power grid have rapidly increased. In order to minimize line losses of power systems, it is crucially important to define the size and location of local generation to be placed. Minimizing the losses in the system would bring two types of saving, in real life, one is ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013